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Abstract—A message is sent over a length-6 ISI channel and
through additive white Gaussian noise. Given a sequence of input-
output pairs, we investigate adaptively designing a filter that
is optimal in the MMSE sense. In particular, we study three
different algorithms: LMS, Sign-LMS, and RLS. To aid us in our
estimation of the original message, a decision feedback equalizer
(DFE) is implemented. The results obtained seem to agree with
expectation: LMS achieved a 99.59% bit recovery accuracy after
17 iterations, Sign-LMS achieved a 99.49% bit recovery accuracy
after 23 iterations, and RLS achieved a 99.59% bit recovery
accuracy after 3 iterations. An introduction, background theory,
experimental results with analysis, a future work section, and a
conclusion are included.

Index Terms—DFE; MMSE; adaptive filter design; computa-
tional study; LMS; Sign-LMS; RLS; message recovery

I. INTRODUCTION

The primary goal of the work detailed is to decode a text
message that has been sent (after having been translated into a
sequence of bits and then mapped sequentially to binary phase
shift keying (BPSK) symbols) over a length-6 inter-symbol
interference (IST) channel and through additive white Gaussian
noise (AWGN). The received signal-to-noise ratio (SNR) is 13
dB. Preceding the information-bearing signal transmission, a
length-350 sequence of training bits is sent. The known input-
output pairs enable one to estimate the channel plus noise
by designing an adaptive filter (length-6) that, in this case,
attempts to achieve optimality in the MMSE sense. Figure 1
below illustrates the setup.
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Fig. 1. Implementation for optimizing filter coefficients

The labels mean the following: x; input training bits, h the
actual channel plus noise, y; the actual noisy observed output
during training, g the estimated channel plus noise, and % the
estimated output obtained by convolving x; with g. We use
various algorithms to estimate the filter g that minimizes the
MMSE, E{|y; —§:|?}. In particular, we use the standard LMS,
Sign-LMS, and RLS adaptive filter update algorithms. We then
implement a decision feedback equalizer (DFE) scheme that
enables us to estimate the actual information-bearing input bits

z, given only the testing noisy output signal y,. In particular,
we use the method shown in Figure 2.
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Fig. 2. DFE implementation

To be clear, we do not know z, (this is what we want to
decode) or h. All we have is the observed noisy output signal
Yo and g (trained previously). We let Z,[n] = £1, add it to the
standard sliding window” Zyq[n] = [£1,z[n — 1], ...,z[n —
517, and compute the error ex1[n] = (yo[n] — Z+1[n]T 7).
We then make a decision about the input by comparing the
magnitude of the error: If |e1[n]| > |e—1[n]| then Z,[n] = —1
else Z4[n] = +1. We use this simple scheme as our DFE. It
is used with all three algorithms. With the general framework
and implementation outlined, we can examine some of the
theoretical background of our chosen algorithms.

II. THEORETICAL BACKGROUND

Here we provide a short and basic theoretical background
for each algorithm to motivate their use and enable the reader
to implement them.

A. LMS
As discussed in class [2], for designing a length-6 filter

G =1[g[0],9[1],---,9[5]]%, we use the update equation:
F = g 1 2panlefnl M
where the “sliding window” of z[n]’s is Z[n] = [z[n], x[n —

1],...,2z[n—>5]]", the error function is e[n] = y[n]—Z[n]" g™,
and the learning rate is 1 ~ (Ap;, + Amax) ' We obtain
@ by estimating R., of the 350-length input training bits,
obtaining the largest (Amax) and smallest (\;,,) eigenvalues
of R.;, and using the “optimal” estimated learning rate (as
shown in class) O‘min + )\max)_l . In our experiments (as
will be discussed in the “Analysis of Experimental Results”
section), the p for LMS was approximately 0.00055.

With a “reasonable” u selected, we will likely have mean
convergence to an MMSE optimal filter § (if there was no
noise)). The presence of the AWGN just means that our filter



will not able to perfectly match the optimal. Furthermore,
assuming the channel plus noise do not change between the
training and testing periods, our estimated § should work well.

B. Sign-LMS

Here we use an adaptive learning rate with an approach that
has lower computational complexity. In particular, we use the
following update rule:

g(n+1)

g @)

where e[n| is defined as in LMS and z[n — j] represents
the 5" element from the sliding window of training input bits
Z[n] (same as in LMS). For z, complex, the sign function
works as follows:

(11 = g"™[5] + 24;sign(eln]z[n - j])

Ty

sign(x.) 3
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The familiar scenario (which is a sub-case) is for z, real,
which works as follows:
1 if0<z. <1
ifx,=0
if —1<z,.<0

sign(z,) =< 0
—1

The adaptive learning rate rule works as follows:

(n)
H(n-{—l) _ M
J 0.5 * ug.n)

if sign does not change

if sign changes

As mentioned in class, though there is low computational
complexity, it may take longer to converge to the optimal filter.

C. RLS

The Recursive Least Squares Algorithm (RLS) is known
for having high computational complexity but obtaining the
optimal filter coefficients extremely quickly (and making the
learning rate approach 0). This is a particularly interesting
approach and has the following update equation (as shown in
class):

gt = g _ R;xl[fn]v_gg “)

However, in a more detailed fashion we can formulate the
recursion in the following manner [3]

Gt = g™ 4 e[n]Kn] ®)
where: Pn|Z
2 [n]@[n] (©)

~ [+ Zn]T P[n]n]

where Z[n] is defined as in LMS. The forgetting factor f can
take on values € (0, 1]; values less than one mean that the
algorithm will place a larger weight on the currently observed
value and a smaller weight on values observed in the past [4].
We will discuss how to choose the value of f more in the
Experimental Results section. P[n] is the estimated inverse
autocorrelation of Z[n|. P[n] is initialized as follows:

P[O] = 5~1HL-;5L )

where [7,7, represents the L-by-L dimension identity matrix
(where L is the length of the desired filter, which in our
case is 6) and J is the regularization factor, which ensures
the algorithm will converge “smoothly and consistently to
the optimal Wiener solution, especially in the presence of
additive noise”[1]. The precise selection of J is discussed in
the Experimental Results section. The standard RLS algorithm
uses the following recurrence equation to update P:

P(n+1) = f~1P(n) — f*K[n)Zn]" Pln) (8)

This concludes the theoretical details necessary for context
and implementation for the RLS algorithm. Now we may
proceed to the Analysis of Experimental Results section where
we examine how these algorithms perform (as well as how the
parameters for RLS are determined).

III. ANALYSIS OF EXPERIMENTAL RESULTS

We examine the performance of the different algorithms
below. It seems that the implementation has definite limits.
By estimating the channel plus noise in the fashion we did, as
well as estimating the input messages with our DFE scheme,
it definitely enabled a cascading of error. A quick glance at
Appendix B (where the actual estimated input messages are
included) will reveal that there was rarely a single bit error;
usually one bit error would lead to two which would lead to
three until at some point it would stop. This is certainly due to
the way we insert our best estimate into the sliding window
vector Z[n] during the decoding stage (where if an error is
made, future predictions will be based on it and therefore could
be more likely to produce more errors). This implementation
still seemed to do quite well but a change in implementation
might improve performance (more on this matter is discussed
in the Future Work section). If time allowed, it could be of
interest to examine the likelihood of having n consecutive bits
incorrect, as well as statistics regarding likelihood of error
given recent accuracy. This is beyond the scope of the current
study.

A. LMS

We examine the performance of the LMS algorithm in terms
of the contour plot (which outlines the convergence behavior
of a pair of filter coefficients) and the MSE.

1) Contour Plot: In Figure 3 we compare the real parts of
the filter coefficients g[3] and g[5] over the final 175 steps of
running LMS. To be clear, for all such plots in the sections
below, g[5] is the vertical axis and g[3] is the horizontal axis.
We observe that even while the MSE is minimized, the coeffi-
cients still jump around within a tight cluster (Re{g[3]} €
(—0.917,—0.9125), a window of size about 0.0045 and
Re{g[5]} € (0.054,0.0605), a window of size about 0.0065).
They also move along in a “zig-zag” pattern that frequently
revisits similar points, whose steps are along two different
diagonals (which matches the elliptical contour plot we would
expect to see in “g-space”). In a similar fashion, in Figure 4
we see the motion of Im{g[3]} and Im{g[5]}. Though, in
this particular case Im{g[3]} € (—0.44, —0.4335), a window



of size about 0.0065 and Im{g[5]} € (—0.0984,—0.093), a
window of size about 0.0054.
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Fig. 3. LMS with DFE Contour for Re{g[3]} vs. Re{g[5]} during the last
175 steps.
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Fig. 4. LMS with DFE Contour for Im{g[3]} vs. Im{g[5]} during the last
175 steps.

2) Error Plot: In Figure 5 we summarize the MSE over
the entire run-time, which required 17 iterations through the
training data for the filter to exhibit a mean convergence about
an acceptable result (and for the bit error of the message to
be minimized). Considering the training data is 350 bits long,
it took nearly 6 iterations for the filter’s MSE error to drop
into a “reasonable range”. The later iterations did not show
a large improvement in the MSE but there was an observed
improvement in bit error (which ended up settling to 144 bits
wrong, which means 99.59% correct). To see the decoded
message using LMS, please see Appendix B.

Now that we have examined, in detail, the performance of
the LMS algorithm in terms of its contour plots and MSE, we
continue to the next algorithm.

B. Sign-LMS

We examine the performance of the Sign-LMS algorithm
in terms of the contour plot (which outlines the convergence
behavior of a pair of filter coefficients) and the MSE.
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Fig. 5. LMS with DFE MSE over time (showing all 17 iterations through
the training bits)

1) Contour Plot: In Figure 6 we compare the real parts
of the filter coefficients g[3] and g¢[5] over the final 175
steps of running Sign-LMS. As with LMS, even while the
MSE is minimized, the coefficients still jump around within
a tight cluster (Re{¢[3]} € (—0.9065,—0.899), a window
of size about 0.0075 (1.67 times larger than LMS) and
Re{g[5]} € (0.054,0.063), a window of size about 0.009
(1.384 times larger than LMS)). They also move along in a
“zig-zag” pattern that frequently revisits similar points, whose
steps are along two different diagonals (which matches the
elliptical contour plot we would expect to see in “g-space”).
In a similar fashion, in Figure 7 we see the motion of Im{g[3]}
and Im{g[5]}. Though, in this particular case Im{g[3]} €
(—0.443, —0.436), a window of size about 0.007 (1.077 times
larger than LMS) and Im{g[5]} € (—0.104, —0.097), a win-
dow of size about 0.007 (1.3 times as large as LMS) . Thus, it
is clear from the contour plots that Sign-LMS does not enjoy
a convergence that is as tight as LMS.
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Fig. 6. Sign-LMS with DFE Contour for Re{g[3]} vs. Re{g[5]} during the
last 175 steps.

2) Error Plot: In Figure 8 we summarize the MSE over
the entire run-time, which required 23 iterations through the
training data for the filter to exhibit a mean convergence about
an acceptable result (and for the bit error of the message to
be minimized). Considering the training data is 350 bits long,
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Fig. 7. Sign-LMS with DFE Contour for In{g[3|} vs. Im{g[5]} during the
last 175 steps.

it took nearly 14 iterations for the filter’s MSE error to drop
into a “reasonable range”(which is almost 2.3 times longer
than LMS; though it did finally exhibit an acceptable mean
convergence in only 1.35 times as long as LMS so it is not that
terrible). The later iterations did not show a large improvement
in the MSE but there was an observed improvement in bit
error (which ended up settling to 178 bits wrong, which means
99.49% correct). To see the decoded message using Sign-LMS,
please see Appendix B.
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Fig. 8. Sign-LMS with DFE MSE over time (showing all 23 iterations
through the training bits)

C. RLS

To begin, we examine how to select the parameters ¢ and
f. Instead of selecting § in an ad-hoc fashion it has been
suggested that one should choose it as follows[1]:

_ L(1+v1+ SNR) (9)
o SNR

where SNR represents the signal-to-noise ratio, which is given
as 13dB. Thus, in our situation we should select:

_ 6(14+v1+13)
o 13

] Var(z)

) Var(x) (10)

where the Var(z) can be estimated from the training data
as about 1.002. This is the value used in our experiments.

Concerning f, a parameter sweep was carried out and it
was clear that 0.999 was an optimal value (smallest that still
obtained best results). The high value can be attributed the
short length of the desired filter. Now that it is clear how the
parameters should be selected, we examine the performance of
the RLS algorithm in terms of the contour plot (which outlines
the convergence behavior of a pair of filter coefficients) and
the MSE.

1) Contour Plot: In Figure 9 we compare the real parts of
the filter coefficients ¢[3] and ¢[5] over the final 175 steps of
running RLS. As with LMS and Sign-LMS, even while the
MSE is minimized, the coefficients still jump around within
a tight cluster (Re{g[3]} € (—0.918,—0.9115), a window of
size about 0.0065 (1.44 times larger than LMS and 0.867 of
Sign-LMS) and Re{g[5]} € (0.05,0.06), a window of size
about 0.01 (1.538 times larger than LMS and about 1.11 times
larger than Sign-LMS)). They also move along in a “zig-zag”
pattern that frequently revisits similar points, whose steps are
along two different diagonals. Likewise, in Figure 10 we see
the movement of Im{g[3]} and Im{g[5]}. However, in this
particular case Im{g[3]} € (—0.443,—0.433), a window of
size about 0.01 (1.54 times larger than LMS and 1.43 times
larger than Sign-LMS) and Im{g[5]} € (—0.0986,—0.0913),
a window of size about 0.0073 (1.352 times as large as LMS
and 1.043 times as large as Sign-LLMS) . Thus, it is clear from
the contour plots that in three cases RLS does not enjoy a
convergence that is as tight as LMS or Sign-LMS. However,
as we shall see from an inspection of the MSE, this has not
ruled out the effectiveness of the algorithm.
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Fig. 9. RLS with DFE Contour for Re{g[3]} vs. Re{g[5]} during the last
175 steps.

2) Error Plot: In Figure 11 we summarize the MSE over
the entire run-time, which required just 3 iterations through
the training data for the filter to exhibit a mean convergence
about an acceptable result (and for the bit error of the message
to be minimized). Considering the training data is 350 bits
long, it took less than 1 iteration for the filter’s MSE error
to drop into a “reasonable range”(which is considerably faster
than either of the other algorithms!). The later iterations did
not show a large improvement in the MSE but there was an
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Fig. 10. RLS with DFE Contour for Im{g[3]} vs. Im{g[5]} during the last
175 steps.

observed improvement in bit error (which ended up settling to
144 bits wrong, which means 99.59% correct— just as good as
LMS and 34 bits better than Sign-LMS). To see the decoded
message using RLS, please see Appendix B.
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Fig. 11. RLS with DFE MSE over time (showing all 3 iterations through
the training bits)

IV. FUTURE WORK
A. Different Implementations

It is evident that the implementation used was very simple
and most likely did not lead to the best possible results. It
remains to be seen how much could be improved by adjusting
the implementation. However, if time was not an issue, the
following would be interesting avenues of exploration.

1) Keep Main Implementation, Adjust DFE: It is evident
that our implementation paired with the DFE certainly lead
to compounding errors. It seems that a more sophisticated
and subtle DFE could possibly improve results. For instance,
taking the hint from Sign-LMS, it could be worthwhile to
investigate how sign changes in the error between consecutive
steps could be used to better predict whether the original input
bit was a -1 or +1. Keeping track of such changes might enable
one to better enumerate confidence in a given selection. Even

if this criteria was used in addition to the current DFE, it could
prove useful. For instance, by keeping track of sign changes,
one could set a threshold to say that “though the naive DFE
indicates one should choose -1, perhaps +1 is a better choice”.
The exact details of such an adjustment should be studied!

2) Change Main Implementation Filter: We took for
granted that we should try to model the channel plus noise.
However, there is another very obvious method that could
prove fruitful as well. Namely, it would be wise, to try
estimating g as shown in Figure 12 with g.
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Fig. 12. Alternative Implementation

In this scenario, it seems that the training stage could wisely
take place in the frequency domain. Once the training is
complete, we could use a DFE that would act like sign(Z;). In
this sense, it would be elegant to have the output of the filter
be an estimate of the original message immediately. It is not
clear if performance would be improved by this method but it
seems likely that the cascading of errors might be less likely
to occur.

3) Frequency Domain: For either of the implementations
discussed, it would be interesting to compute the desired
filter during the training phase in the frequency domain.
For instance, in the original implementation (as shown in

Figure 1), g in the frequency domain: g = [DTFT(%%)

B. Different Algorithms

There are a number of different adaptive filter algorithms
that could follow very naturally and nicely augment the current
study. For instance, Normalized leas mean squares (NLMS)
seems to provide a method to choose a learning rate that
better guarantees stability (and is less sensitive to scaling of
the input). Another relevant option, assuming the unknown
filter is LTI and the noise stationary, would be the Wiener
filter. It would be fascinating to see in practice how these two
algorithms perform in the various implementations mentioned,
in comparison to the original three algorithms.

C. Performance Metric

One additional metric that should be considered is exact
computation required— in terms of actual computations run for
a given algorithm on a given computer. This might provide
a clearer perspective on the precise tradeoffs one has to
make between computational complexity and speed of mean
convergence.

V. CONCLUSION

In this study we examined the performance of the LMS,
Sign-LMS, and RLS algorithms in decoding a message sent
over an ISI channel and through AWG noise. We provided a
context for the problem, a basic theoretical background on the



different algorithms, a detailed analysis of the experimental
results (with a specific focus on the contour plots and MSE),
and we discussed some future avenues of exploration that
could be taken immediately as a means of furthering this study.
From a decoding perspective, the LMS and RLS algorithms
were the clear champions. In this sense (as well as the
other metrics reviewed) the-algorithms performed as expected.
To summarize, the LMS algorithm, with 144 bits incorrect,
achieved a 99.59% recovery rate in 17 iterations. The Sign-
LMS algorithm, with 178 bits incorrect, achieved a 99.49%
recovery rate in 23 iterations. The RLS algorithm, with 144
bits incorrect, achieved a 99.59% recovery rate in only 3
iterations.
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