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Introduction

Research Perspective:

1 Associative memory: mechanism for general intelligence

2 Build model “from the beginning”

3 State-of-the-art experimental neuroscience literature informs features

4 Identify features related to canonical computations in various brain regions

5 Not interested in reverse-engineering a particular region of the brain

6 Capture general features important in a model of associative memory

7 Design a model that gives insight into how reliable brain states can arise
from neurons that communicate unreliably.

8 Examine candidate “information-bearing signals” (network-level features)

9 Integrate arbitrary sensory information from an embodied agent
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Unreliable Neurotransmitter Release, Reliable Network
Preserves Topological Structure
Preserves Temporal Structure
Preserves Spectral Structure
Associative
Hierarchical
Online

Unreliable Neurotransmitter Release, Reliable Network

P(neurotransmitter released|neuron spikes) ∈ (0.04, 0.33) (mean
0.123± 0.009, median 0.111) at room temperature (22− 25 ◦C) )[1]

Stable brain states still achieved at network-level

General problem of a reliable system composed of unreliable parts [2]

Investigate candidates for information-bearing signal (network-level
features) [3]

Examples of Information-Bearing Signal Candidates:

1 Phase Synchrony [4–6]: If high in P→syn then likely Psyn→ affected
[5, 7, 8]; esp. when high between [6, 9–12]. Cognitive performance
correlated with phase synchrony in various frequency bands [13–18].

2 Peak-Power Envelope Synchrony [19]: Primarily in low-frequency bands
[20]. Related to slow timescale state changes [20, 21]; insight for coupling
of long-range sparsely connected populations [22–25].

3 Jacobian Matrix/Graph Analysis: Eigenvalues, Topological Properties,
etc.
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Preserves Topological Structure

Topological relation of objects in real-world are preserved in their neural
representation throughout the brain.

Examples:

Retinotopic Map: Objects adjacent to one another in the visual field send
information to neurons that are near one another in the receptive region
[26–29] (involved in visual phototransduction).

Tonotopic Map: Energy at nearby frequencies (in cochlea) will send
signals to neurons that are of a similar graph distance to one another
[30–32] (involved in auditory transduction).
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Tonotopic Map: Energy at nearby frequencies (in cochlea) will send
signals to neurons that are of a similar graph distance to one another
[30–32] (involved in auditory transduction).
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Preserves Temporal Structure

Examples:

Spiking Neuron: Excitatory (cite?) and Inhibitory (cite?). Classic
Hodgkin-Huxley [33] used instead of others [34].

Spike-Time Dependent Plasticity: [35–37]

Trajectories in Phase Space: at various time-scales (cite?)
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Preserves Spectral Structure

Examples:

Input Signal: Frequency content of input signal should affect excitability
of spiking neuron

Spiking Activity: Frequency content of spiking activity should affect
evolution of synaptic weights (evolution of neural pathways) – hence need
for STDP-like protocol.

Interpopulation Communication: Should occur in directional narrowband
signals [38–42]. Feedforward interactions in gamma band (60-100 Hz);
feedback interactions in beta band (12 - 35 Hz) supported by theory
[40, 43, 44] and experiment [39, 41, 45].
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Associative

Multisensory integration. If a phase trajectory is encoded with a multisensory
input, a similar phase trajectory should be traversed when only a subset of the
modalities of the signal are presented.

Example:

(1) Show a red apple and (2) say “red apple”. The visual and auditory signals
will be fed to their respective populations and will cause a network-level
trajectory to be traversed. When only one of the modalities is presented (1) or
(2), a similar network trajectory should be traversed.

Using characterization via ”information-bearing signal”, such similarity becomes
more manageable to establish.
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Hierarchical

Simple memories encoded at lower levels can be combined to make more
complex memories at higher levels. This is reminiscent of sequences of
sequences.
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Online

There is some latency due to propagation time, refraction of membranes, etc.
However, in general, environmental information encoded in neocortical
structures are routed immediately to motor structures in a feedforward manner
[46–51].
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Conclusion

We have attempted to integrate aforementioned features into our model. We
are in the process of implementing it.

PVL PVR

Figure: Basic Diagram of Signal Transduction Model (Layer 1). Each pair of
populations sharing a border will have neurons connected to one another. Those that
do not share a border will not have neurons that share a synapse.
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