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I. INTRODUCTION

In this paper1, we discuss the process and results of completing a Monte Carlo Simulation of Proba-
bilistic Parsing. Furthermore, in the conclusion we offer some reflections and future experimental ideas.
The code for the work is included as an appendix. The grammar, G (Vn, Vt, S,R), used was as follows:

Vn = {S}

Vt = {a, b, c, d}

R = {S → aSa, S → bSb, S → cSc, S → dSd, S → ε}

By using the grammar to generate a few sentences, one quickly sees that the language, L (G), consists
of all even-length (length two or greater) palindromes; examples include aa, bb, abba, abccba, etc. In
Chomsky Normal Form, G is as follows (where ε represents the null symbol):

S0 −→ A1A2|A1A1|B1B2|B1B1|C1C2|C1C1|D1D2|D1D1|ε
S −→ A1A2|A1A1|B1B2|B1B1|C1C2|C1C1|D1D2|D1D1

A1 −→ a

B1 −→ b

C1 −→ c

D1 −→ d

A2 −→ SA1

B2 −→ SB1

C2 −→ SC1

D2 −→ SD1

Using R we generated a large set (n # 1000) of sentences {Wi|i = 1, 2, 3, . . . , n}. For each sentence,
Wi = wi1wi2 . . . wik, we constructed a cost matrix, D = [d (wi, vj)], where the cost d (wi, vj) was
based on the pdf for a vocabulary word vj which is assumed to be Gaussian N (x, µi, s). For illustration,
consider the noisy sentence a′b′b′′a′′ and its distance matrix (where for the actual computation each of
these words is represented by a four-dimensional vector in euclidean space):

1This work was completed as Project 2 for Dr. Stephen E. Levinson’s ECE 594: Mathematical Models of Language, Spring 2013.
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a b c d

a′ d11 d12 d13 d14
b′ d21 d22 d23 d24
b′′ d31 d32 d33 d34
a′′ d41 d42 d43 d44





We then parsed each sentence and counted errors in both the acoustic (“naive”) and parsed recognition
of Wi. Furthermore, we accumulated the statistics over the entire set of sentences and examined how
the error probability varied with s. Before getting to the results, we will offer a brief explanation of the
process used along the way.

II. PROCESS EXPLANATION

Instead of providing a line-by-line explanation of how the code works (which is basically done via
comments in the code itself), here we will highlight some of the main ideas, technical decisions, and
conceptual interpretations that were required to make progress.

A. Representing a Vocabulary Word
In order to ensure symmetry among the distances between words, we let:

a = [1, 0, 0, 0]′

b = [0, 1, 0, 0]′

c = [0, 0, 1, 0]′

d = [0, 0, 0, 1]′

Noise was introduced in a very natural way, with a Gaussian being centered around each of the coordinates,
a value would be chosen to produce the new value for that coordinate. As the s increased, the euclidean
distance of the noisy word to the original word would increase (and it could become closer to another of
the four canonical words).

B. Sentence Generation
When we initially generated sentences from the grammar, we removed all duplicates. Thus, in order to

generate a set of about 4,000 unique sentences, we needed to generate roughly 12,000 at the beginning.

C. Acoustic Decoding
For the “naive” decoding, for each word, its euclidean distance to one of the vocabulary words would

be computed; the nearest one would be declared the originating word. For the decoding of each sentence,
the number of word errors in decoding would be counted and an average word-error probability, pe, for
the particular sentence would be computed. The pe was then averaged over all sentences. This provided
a helpful metric for measuring the success of the acoustic decoding.



3

D. Parsed Decoding
For this process, we primarily referenced the following equations:

Φkk(A) = min
{A→vj}

{dkj} (1)

Φk1k2(A) = min
{A→BC}

{ min
k1≤τ<k2

{Φk1τ (B) + Φτ+1,k2(C)}} (2)

For our purposes, eq.(1) was used with non-terminal symbols A1, B1, C1, and D1. Since the rules
associated with these symbols all require transitioning to a single terminating symbol (A → vj), the min
is effectively ignored. Thus, conceptually, it makes the (accurate) assertion that the “cost” of claiming that
a given non-terminal symbol, A, produced the observed noisy terminal symbol is purely the euclidean
distance (dkj) of the kth word in the noisy sentence to the terminating symbol, vj , that the non-terminating
symbol can produce according to the grammar. This means that the Φ(A1) will have along its diagonal
the first column (that beneath the a) of the distance matrix; the other Φ matrices are defined similarly. The
non-diagonal entries are filled with infinities, which makes sense, as this asserts that such rules cannot
produce sentences of greater than length one.

For our purposes, eq.(2) was used with non-terminal symbols S, A2, B2, C2, and D2. Since there
are eight different rules for S, each of which require transitioning to non-terminating symbols, we must
consider taking the full minimum over the sliding window of values (represented by the τ ) and over the
different rules. However, since A2, B2, C2, and D2 each have only one specified rule, we can effectively
ignore the first min and focus solely on the second. Conceptually, this computation (Φk1k2(A)) computes
the “cost” of claiming that one of the non-terminating symbols was used to produce the sub-sentence
starting from word k1 to word k2 of the observed noisy sentence; the particular combination that costs
the least is selected. By completing this computation iteratively it eventually finds the sequence of rules
that the grammar could have used to produce a sentence close to the noisy sentence with the least overall
cost (when the cost is zero, it means the grammar could produce the noisy sentence).

It is important to note that in order for the equations to work, we must carefully specify the order of
(k1, k2) values to use; we begin at the super diagonal (the diagonal just above the main diagonal) move
along that diagonal for each of the Φ (always looking back at entries in previous diagonals for the current
computation) and once they are all full, we move to the next diagonal. We proceed this way until we reach
the top-right corner of the matrices. In the top-right of the Φ(S) will sit the overall “cost” of claiming
that the grammar could have produced the noisy word.

Practically speaking, it is not enough just to compute the Φ matrices, one needs to be able to interpret
the results to actually see which string was decoded. There are a number of ways to accomplish the task.
One straightforward way is the following: create another set of matrices to store sub-sentences , one for
each of the non-terminating symbols for a total of nine. We fill the diagonal with a for A1, b for B1, c
for C1, and d for D1; on the off-diagonal we store nothing. In the sub-sentence matrices for the other
non-terminating symbols we store nothing to begin. At each step, (as we move along the diagonals of the
Φ matrices) when a particular pair of non-terminating symbols is chosen we look at the position in their
respective sub-sentence matrices (in the same coordinates as the values just chosen for the Φ matrices),
find the sub-sentences stored in each, and concatenate them in the order given by the sum above. This
process is carried out along the way and eventually the decoded sentence will be stored in the top-right
entry of the sub-sentence matrix for S, the same place where the overall cost for claiming S could produce
such a string is stored in Φ(S).
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III. RESULTS

The naive approach assumed that the only way to determine the “correct” word would be to find the
nearest word. As a result, a sentence was viewed as a sequence of determining nearest words. However,
this completely ignored the structure of the language that generated the sentences! Therefore, in general,
the decoded sentences were not even valid sentences in the language L (G).

However, by taking into account the structure, the grammar, the syntax, one realizes that certain
combinations are more likely (not to mention well-formed). More specifically, by recognizing the hierarchy
of a sentence (and recognizing the constraints imposed by the generating grammar), one can make a better
decision when faced with noise. Considering the following equation from Levinson p.155 is helpful:

H (v|ṽ)
log2|VT |

− 1

H (L (G))
≤ pe (3)

Supposing v is the transmitted word and ṽ is the decoded word, the equivocation will be H (v|ṽ). Using a
naive (acoustic) decoder that does not take into account the grammar is equivalent to using an equivocation
term HA (v|ṽ). Using the parsing decoder (which takes into account the grammar) is equivalent to using an
equivocation term HP (v|ṽ). Clearly, HA (v|ṽ) ≥ HP (v|ṽ) (since the acoustic estimate will have higher
entropy than the parsed), which would mean that the acoustic decoder would have a higher lower-bound
for the word-error probability, pe. Therefore, for a fixed noise σ, the word-error probability will be larger
for the acoustic method than the parsed. We observe this trend in our simulations, as shown in the figures
below.
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Fig. 1. The figure shows the average word-error probability (vertical axis) in a sentence as a function of the standard deviation
(0 ≤ σ ≤ 4) with resolution 0.1 of the Gaussian noise that corrupts the original words (horizontal axis). 4053 unique sentence
generated from R were used.

Figure 1 displays the results for an experiment run with a set of 4053 unique words generated by the
grammar and for standard deviation of the noise 0 ≤ σ ≤ 4, where steps were taken for σ with resolution
of 0.1. Clearly, for σ < 0.2, the two methods perform identically–they both perfectly decode the noisy
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Fig. 2. The figure shows the difference in acoustic pe,A and parsed pe,P as a function of σ when 4053 unique sentences (generated
from R) were used with (0 ≤ σ ≤ 4) and resolution 0.1.

sentence. This is to be expected as the parser will never do worse than the acoustic. However, as the noise
is turned up, we begin to see how the parsed outperforms the acoustic; the maximum outperformance
occurs for σ = 0.7 and results in a difference (peA − peP ) of 0.1362, as shown in Figure 2. As the noise
is turned up more, the difference decreases until appearing to slow to a level of around .0277. Judging by
the slope of the curves in both plots, it appears that if the noise was allowed to increase arbitrarily high,
the acoustic and parsed curves could become arbitrarily close, seemingly approaching a value under 0.7
(the error probability for a uniform source with the same discrete alphabet would be 0.75; considering the
entropy should be lower, in our case, it makes sense that the error probability is also lower). However,
such results are not particularly relevant as noise beyond even a fairly small level results in such high
error probabilities that it renders both methods useless. The main point to be taken from the plots is that
the ordering of eq. (3) is preserved for a fixed σ, as explained in Levinson p.156 [2].

IV. CONCLUSION

The numerical results seemed to match well with previous experiments, intuition, and theory. However,
before concluding this lesson on “the importance of being parsed”, it is important to acknowledge one of
the drawbacks. Unfortunately, the parsing method will likely not do very well (and will likely do worse
than even the naive method) if presented with a sentence that was generated by another grammar (where
the performance will scale with the degree to which the grammar differs). In this sense, the method
seems fairly “over-trained” and brittle. Practically speaking, this may not really be a concern. For many
applications, like those discussed in Levinson et. al, sometimes the best answer is to just have the user of
a system provide input to help customize the constraints for the given user (and improve the parsing)[1].

The author would be enthusiastic about carrying out a set of experiments that could quantify this
intuition and determine the extent to which a given parser’s performance degrades as a function of the
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grammar being progressively different.
Also, as another extension idea that integrates lessons from both projects, the author thinks it would

be intriguing to: (1) generate text from a grammar; (2) feed said text to an HMM that could learn its
structure; (3) somehow integrate the rules learned into a parser; (4) send the original text through noise
into the parser; (5) see how the error rate will do as a function of the grammar complexity (which is
known to the experimenter). Being able to quantify the probability of word-error as a function of noise
and complexity of the inferred grammar would be a fascinating experiment.
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Appendix: The MATLAB Code

0.1. Primary Program. Here we provide the code used in the top-level program.

%P2
%Alex Duda
clc;
clear all;
%First we generate about 10,000 sentences using R;
%Then we keep only the unique sentences, so
%we have a set of around 4,000 unique sentences.
time start=rem(now,1)*24
tempN=30000;
i=1;
COUNTER=0;
while i<tempN

tempW{i}=Sgen([]);
if size(tempW{i},2)==0
end
if size(tempW{i},2)>0

i=i+1;
end

end
tempN=size(tempW,2);
W=unique(tempW(1:tempN));
N=size(W,2);
PROB ERROR=zeros(1,N);
NAIVELY DECODED W=cell(1,N);
%Initialize a,b,c,d vectors.
a=[1 0 0 0]';
b=[0 1 0 0]';
c=[0 0 1 0]';
d=[0 0 0 1]';
%Send generated sentences to Snoisy to produce noisy versions.
%First set the standard deviation of the noise, s.
ITER=1;
sMIN=0;
sMAX=5;
sRES=0.1;
ITER MAX=size(sMIN:sRES:sMAX,2);
AVG PROB ERROR s=zeros(1,ITER MAX);
NAIVE AVG PROB ERROR s=zeros(1,ITER MAX);
for s=sMIN:sRES:sMAX

NW=cell(1,N);
for i=1:N

1
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NW{i}=Snoisy(W{i},s);
end
%Let us compute a naive decoding. Letter−by−letter, we will map to the nearest.
for i=1:N

LL=size(NW{i},2);
if LL>0

for j=1:LL
NAIVELY DECODED W{i}(j)=NearestWord(NW{i}(:,j));

end
%2. Compare the corrected sentence with the actual (W{i}).
NAIVE ERRORS=0;
for rr=1:LL

if NAIVELY DECODED W{i}(rr)==W{i}(rr)

else
NAIVE ERRORS=NAIVE ERRORS+1;

end
end

NAIVE PROB ERROR(i)=NAIVE ERRORS/LL;
end

end
%Compute average error across words for specific s value AVG ERROR(ITER)=sum(ERROR)/N.
NAIVE AVG PROB ERROR s(ITER)=sum(NAIVE PROB ERROR)/N;
%Compute the Cost Matrix.
D=cell(1,N);
for i=1:N

D{i}=NWv(NW{i});
end
%Initialize the PHI Matrices for each D.
PHI init=cell(1,N);
for i=1:N

PHI init{i}=PHI INIT(D{i});
PHI initS{i}=Si(D{i});

end
%Set PHI (and PHI S) to be equal to the initialized version.
%This will be updated through the algorithm.
PHI=PHI init;
PHI S=PHI initS;
%For reference, the indices are as follows:
%A1=1, B1=2, C1=3, D1=4, S=5, A2=6, B2=7, C2=8, D2=9
%Must fill in entries of S,A2,B2,C2, D2 diagonal−by−diagonal.

%Loop over the k1,k2 so we go across the superdiagonal of each, and move to
%the next higher diagonal. Code below should fill up all the matrices.
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for i=1:N
L=size(W{i},2);
if L>0

%Determine which diagonal
for j=2:L

%Determine k1,k2 pairs.
K1=1:1:L−j+1;
K2=j:1:L;
%Move along diagonal
for d=1:L−j+1

%%STORE THE STRINGS ALONG THE WAY.
%%CONCATENATE THE BEST SUBSTRINGS AT EACH MINIMIZING ADDITION.

%For a given k1 k2, compute all the PHIs:
%Compute PHI S for ith D
SR=zeros(1,8);
StC=cell(1,8);
[StC{1},SR(1)]=min sum PHI pair(K1(d), K2(d), 1, 6, PHI{i},PHI S{i});
[StC{2},SR(2)]=min sum PHI pair(K1(d), K2(d), 1, 1, PHI{i},PHI S{i});
[StC{3},SR(3)]=min sum PHI pair(K1(d), K2(d), 2, 7, PHI{i},PHI S{i});
[StC{4},SR(4)]=min sum PHI pair(K1(d), K2(d), 2, 2, PHI{i},PHI S{i});
[StC{5},SR(5)]=min sum PHI pair(K1(d), K2(d), 3, 8, PHI{i},PHI S{i});
[StC{6},SR(6)]=min sum PHI pair(K1(d), K2(d), 3, 3, PHI{i},PHI S{i});
[StC{7},SR(7)]=min sum PHI pair(K1(d), K2(d), 4, 9, PHI{i},PHI S{i});
[StC{8},SR(8)]=min sum PHI pair(K1(d), K2(d), 4, 4, PHI{i},PHI S{i});

[PHI{i}{5}(K1(d),K2(d)),whichS]=min(SR);
PHI S{i}{5}{K1(d),K2(d)}= StC{whichS};

%Compute PHI A2 and PHI S A2 for ith D
[PHI S{i}{6}{K1(d),K2(d)},PHI{i}{6}(K1(d),K2(d))]=min sum PHI pair(K1(d), K2(d), 5, 1, PHI{i},PHI S{i});
%Compute PHI B2 for ith D
[PHI S{i}{7}{K1(d),K2(d)}, PHI{i}{7}(K1(d),K2(d))]=min sum PHI pair(K1(d), K2(d), 5, 2, PHI{i},PHI S{i});
%Compute PHI C2 for ith D
[PHI S{i}{8}{K1(d),K2(d)},PHI{i}{8}(K1(d),K2(d))]=min sum PHI pair(K1(d), K2(d), 5, 3, PHI{i},PHI S{i});
%Compute PHI D2 for ith D
[PHI S{i}{9}{K1(d),K2(d)},PHI{i}{9}(K1(d),K2(d))]=min sum PHI pair(K1(d), K2(d), 5, 4, PHI{i},PHI S{i});

end
end
%1. Now you need to use the computations to say which sentence has been decoded.
Decoded W=PHI S{i}{5}{1,L};
% 2. Compare the corrected sentence with the actual (W{i}).
ERRORS=0;
for r=1:L

if strcmp(Decoded W(r),W{i}(r))==0
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ERRORS=ERRORS+1;
end

end

if (ERRORS>0)
COUNTER=COUNTER+1;
ERRORS;
W{i};
Decoded W;

end
PROB ERROR(i)=ERRORS/L;
%3. Count the number of errors (0 if correct, 1 if incorrect); ERROR{i}

end
W{i};
NW{i};
Decoded W;

if mod(i,500)==0
WORD NUM=i
TIME i=rem(now,1)*24

end
end
%Compute average error across words for specific s value AVG ERROR(ITER)=sum(ERROR)/N.
AVG PROB ERROR s(ITER)=sum(PROB ERROR)/N;
ITER=ITER+1

end
time end=rem(now,1)*24
plot([sMIN:sRES:sMAX], NAIVE AVG PROB ERROR s, 'r',[sMIN:sRES:sMAX], AVG PROB ERROR s,'g')

0.2. Sgen (). .

function W = Sgen(x)
%When called,Sgen will run the grammar R and return a sentence.
r=rand(1);
w=x;
if (r>=0) && (r<0.2)

W=w;
elseif (r>=0.2)&&(r<0.4)

w=['a' w 'a'];
W=Sgen(w);

elseif (r>=0.4)&&(r<0.6)
w=['b' w 'b'];
W=Sgen(w);

elseif (r>=0.6)&&(r<0.8)
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w=['c' w 'c'];
W=Sgen(w);

elseif (r>=0.8)&&(r<=1)
w=['d' w 'd'];
W=Sgen(w);

end
end

0.3. Snoisy (). .

function [ NS ] = Snoisy( S, std )
%Snoisy accepts a string sentence and outputs a matrix of noisy 4D vecs.
mean=0;
L=size(S,2);
r=mean+std.*randn(16,L);
NS=zeros(4,L);
for i=1:L

if strcmp(S(i),'a')
NS(1:4,i)=[1+r(1,i) r(2,i) r(3,i) r(4,i)]';

elseif strcmp(S(i),'b')
NS(1:4,i)=[r(5,i) 1+r(6,i) r(7,i) r(8,i)]';

elseif strcmp(S(i),'c')
NS(1:4,i)=[r(9,i) r(10,i) 1+r(11,i) r(12,i)]';

elseif strcmp(S(i),'d')
NS(1:4,i)=[r(13,i) r(14,i) r(15,i) 1+r(16,i)]';

end
end

0.4. NearestWord (). .

function [ near w ] = NearestWord( w )
%NearestWord takes in a noisy letter and naively computes the nearest
%letter.
a=[1 0 0 0]';
b=[0 1 0 0]';
c=[0 0 1 0]';
d=[0 0 0 1]';
[˜, I]=min([norm(w−a),norm(w−b),norm(w−c), norm(w−d)]);
if I==1

near w='a';
end
if I==2

near w='b';
end
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if I==3
near w='c';

end
if I==4

near w='d';
end
end

0.5. NWv (). .

function [ P ] = NWv(S)
%NWv takes in a noisy sentence and outputs a distance matrix.
K=size(S,2);
P=zeros(K,4);
a=[1 0 0 0]';
b=[0 1 0 0]';
c=[0 0 1 0]';
d=[0 0 0 1]';
r=[a b c d];
for i=1:K

L=1+(i−1)*4;
H=i*4;
for j=1:4

P(i,j)=norm(S(L:H)'−r(1:4,j));
end

end
end

0.6. PHI INIT (). .

function [PHI init] = PHI INIT( D )
%PHI 1 accepts a distance matrix and outputs a cell consisting of
%the PHI A1, PHI B1, PHI C1, PHI D1
PHI init=cell(1,9);
L=size(D,1);
%Fill each with appropriate INFs.
PHI A1=Inf(L,L);
PHI B1=Inf(L,L);
PHI C1=Inf(L,L);
PHI D1=Inf(L,L);
PHI S=zeros(L,L);
PHI A2=zeros(L,L);
PHI B2=zeros(L,L);
PHI C2=zeros(L,L);
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PHI D2=zeros(L,L);
for i=1:L

PHI S(i,i)=inf;
PHI A2(i,i)=inf;
PHI B2(i,i)=inf;
PHI C2(i,i)=inf;
PHI D2(i,i)=inf;

end
%Set main diagonal for A1, B1, C1, D1
for i=1:L

PHI A1(i,i)=D(i,1);
PHI B1(i,i)=D(i,2);
PHI C1(i,i)=D(i,3);
PHI D1(i,i)=D(i,4);

end
%Write the PHIs into the PHI init
PHI init{1}=PHI A1;
PHI init{2}=PHI B1;
PHI init{3}=PHI C1;
PHI init{4}=PHI D1;
PHI init{5}=PHI S;
PHI init{6}=PHI A2;
PHI init{7}=PHI B2;
PHI init{8}=PHI C2;
PHI init{9}=PHI D2;
end

0.7. Si (). .

function [Si] = Si(D)
%Si accepts a distance matrix and outputs a cell consisting of
%the strings to be stored in PHI A1, PHI B1, PHI C1, PHI D1, etc.
Si=cell(1,9);
L=size(D,1);
[A1,B1,C1,D1,S,A2,B2,C2,D2] = deal(cell(L,L), cell(L,L),cell(L,L), cell(L,L),cell(L,L), cell(L,L),cell(L,L), cell(L,L),cell(L,L));
%Set main diagonal for A1, B1, C1, D1 with a,b,c,d, respectively.
for i=1:L

[A1{i,i},B1{i,i},C1{i,i},D1{i,i}]=deal('a','b','c','d');
end
%Write the PHIs into the PHI init
[Si{1},Si{2},Si{3},Si{4},Si{5},Si{6},Si{7},Si{8},Si{9}]=deal(A1,B1,C1,D1,S,A2,B2,C2,D2);
end

0.8. min sum PHI pair (). .
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function [ best string, minimum ] = min sum PHI pair( k1, k2, NT1, NT2, PHI,PHI S)
%min sum PHI pair accepts a set of indices in the PHI matrix (k1, k2) for a particular D,
%as well as a set of indices indicating which pair of Non−Terminal Symbols should be used (NT1, NT2).
%It then generates a set of numbers and outputs the minimum, as well as the best string,
%a concatenation of the best strings from the combination.
%For reference, the indices are as follows: A1=1, B1=2, C1=3, D1=4, S=5, A2=6, B2=7, C2=8, D2=9
for tau=k1:(k2−1)

M(tau−k1+1)=PHI{NT1}(k1,tau)+PHI{NT2}(tau+1,k2);
end
[minimum, I]=min(M);
tau best=I+k1−1;
best string=[PHI S{NT1}{k1,tau best} PHI S{NT2}{tau best+1,k2}];
end


