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I. INTRODUCTION

As shown in the classic Cave-Neuwrith experiments, hid-
den Markov models (HMMs) have a remarkable ability to
discover structure in input data in a self-organizing man-
ner [1]. Additionally, they have displayed strong results in
sequence-learning in speech processing [2] and computational
biology [3]–[5]. Paired with their general ability to be run
backwards and display a kind of “thinking”, HMMs are a
natural candidate for a building block in abstract models
of brain, language, and mind. This paper will focus on a
couple of successful models that incorporate HMMs as a
building block. Section II will provide a brief background on
the HMM. Section III will focus on a HMM cascade model
for concept learning, whereby groundbreaking experiments in
multi-sensory cognitive robotics are described, which enable
development of higher-order multi-modal concepts, as well
as generative models for actions in the real world [6]–
[8]. Section IV will focus on projects involving hierarchical
HMMs that discover structure within a particular data stream
at various levels of spatiotemporal granularity. Section V will
then discuss the short-term role that HMMs should play in
making progress on the brain/mind problem (Section V) and
conclude by speculating on the possible role that HMMs could
play in the future (Section VI).

II. BACKGROUND

An HMM is a discrete-time stochastic process with two
continuous components {Xn, Yn}, defined on probability
space (Ω,F , P ) [6], [9], [10]. We define {Xn}∞n=1 to be
a discrete-time first-order Markov chain with state space
R = {1, . . . , r}, where r is a fixed known constant. The
model starts in a specific state, i ∈ R, with probability
πi = P (X1 = i). With Π representing the set of r-length
stochastic vectors, we define π ∈ Π as π = {πi}. Thus, for
i, j ∈ R, the Markov chain transition probabilities are given
by aij = P (Xn = j|Xn−1 = i). With A = {aij}, A ∈ A,
where A represents the set of all r × r stochastic matrices.

In an HMM, {Xn} is not visible; its statistics can only be
inferred from the observable random process {Yn}, which is
a probabilistic function of the former. In other words, given
Xn, Yn will assume values from some space E according to a
conditional probability distribution. The resulting conditional
density of Yn is generally assumed to belong to a parametric

family of densities {b(·; θ) : θ ∈ Θ}, where the density
parameter θ is a function of Xn, and Θ is the set of valid
parameters for the specified conditional density assumed by
the model. The conditional density of Yn given Xn = j can
be written as b (·; θj) or, to be concise, bj (·), when the θj
dependence is clear.

With Φ = Π × A × Θ representing the HMM pa-
rameter space, the model ϕ ∈ Φ is expressed as ϕ =
{π1, . . . , πr, a11, a12, . . . , arr, θ1, . . . , θr}. The parameters of
the model can be accessed through coordinate projections
(e.g., aij (ϕ) = aij). When we are not interested in estimating
π, we let Φ = A×Θ. Occasionally the literature uses other
model parameterizations [11], [12].

III. CASCADE OF HMMS

When referring to a “cascade of HMMs” we do so in the
sense described on p.238 of Levinson [10] and illustrated
by Fig. 1. With a focus on multi-sensory integration and
associative memory, HMMs at the bottom of the cascade
are each assigned input from different sensory streams. Thus,
there is an HMM for auditory inputs and an HMM for visual
inputs. The states of these HMMs serve as the input to
HMMs higher up the cascade, like the audio-visual HMM
and the audio-tactile HMM. Continuing in this fashion, one
can construct levels of HMMs that can discover structure at
increasing levels of abstraction and multi-modal integration.
In this section we will go into some of the details involved
in designing and implementing such a cascade model. In
particular, Section III-A will examine some modifications that
need to be made to the classic HMM to prepare it for online
learning; Section III-B will detail the specifics of the cascade
model; Section III-C will explore some of the remarkable
results achieved by the model; Section III-D will allude to
some more recent extension results.

A. Modifications for Online Learning

Though the classic HMM is a powerful model, one of
the drawbacks is that two of the most common methods for
parameter estimation (Baum-Welch and methods based on the
Viterbi algorithm) both require off-line processing [2], [6].
For real-time learning, an iterative or online method is more
appropriate. One can remedy the situation by (1) minimizing
the prediction error of the model through recursive methods
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Fig. 6. Cascade of HMMs. Models , , and are all HMMs.

, and changes accordingly. Note that the literature occa-
sionally describes other model parameterizations (see, e.g., [31]
and [33]).

III. HMM CASCADE MODEL FOR CONCEPT LEARNING

We would like to use multiple HMMs in order to mimic the
concept-learning structure shown in Fig. 5. Formally, let the
topology of an HMM cascade model be as shown in Fig. 6;
i.e., let our cascade model , where each
component model and are HMMs defined according
to the signal model described in Section II-B. Let ,

, and be the state and observation se-
quences corresponding, respectively, to , , and . In
this model, observations of lower models are generally
assumed to be continuous. The observations of upper
model are the concatenated state sequences of the lower
level models; i.e., , and models the joint
distribution of and for each state , where

is the number of states in . (To simplify calculations,
we assume and to be independent, though this is not
strictly necessary.) One interpretation which will be useful later
is that the current state of the upper model is a probabilistic
function of the states of the lower models, making this a com-
positional model.

Note that inference algorithms for HMMs normally give a
distribution over states at every time step. If we wished, we
could use the full state distribution inferred in the lower models
as observation inputs to the upper model. However, this would
lead to a high computational complexity, so as mentioned
above, we convert this sequence of distributions over states
to a “likely” state sequence. Our results later in this paper
use two methods to do this conversion: maximum-likelihood
decoding and Viterbi decoding. There are subtle differences
between the two which we do not have space to go into
here. See [23] for details.

We note that because of the particular compositional structure
of our model (i.e., that input and concept models are handled by
independent submodels), there is not an exact correspondence
with any monolithic generative model, and exactglobal inference
is not possible. Despite this fact, experiments seem to indicate
that using a concept HMM to model the joint distribution
of the states of multiple unimodal HMMs is reasonable.

Fig. 7. Concept learning scenario using a cascade of HMMs. This model cor-
responds to Fig. 3 with the generic models replaced by HMMs.

As mentioned previously, we can train each HMM online
using RMLE [37].

A. Concept Learning

The scenario we are attempting to model is shown in Fig. 7,
which is derived from Fig. 3.

In this scenario, both the robot and the person have a model of
the world, which here is represented by a cascade of HMMs. We
assume that each model structurally allows the recognition of
visual and auditory information present in the world (the lower
level models), and further, that concepts can be inferred and
understood from the sequence of discrete classifications of this
auditory and visual information (using the upper level model).

It is assumed that the boy’s model of the world is better or
more complete than the robot’s model and, therefore, that the
goal of the robot is to learn the boy’s model of the world. To
reach this goal, the robot must try to garner information about
each of the boy’s submodels. To learn the boy’s visual sub-
model, the robot will use visual data obtained from the world
and assume that the boy’s model was learned from similar in-
formation. For learning the boy’s auditory submodel, the robot
will use the boy’s own “speech,” and to learn the boy’s concept
model, the robot will attempt to find a relationship between what
the boy says and what the world presents visually.

Fig. 8 shows the model topology of the scenario we envision.
This scenario proceeds as follows.

1) The model produces a stream of states and
corresponding visual features . The visual features

are accessible by both the boy and the robot. The
stream of states may include such states as
and .

2) The boy uses to recognize this visual stream, producing
estimated state sequence .

3) Using only the visual partial of the joint audiovisual state
pdfs in concept model , the boy “thinks” of the concept
related to the visual input (i.e., chooses the most likely state

concept state in corresponding to ).
4) The boy may choose, at random times, to “speak his

mind.” At these times, he uses the auditory observation
pdf from state to produce . This output becomes the
switch for switching HMM (see Appendix A), which
produces output stream . It is assumed that
the switch is “on” long enough to produce meaningful

Fig. 1. An example of a “Cascade of HMMs”, whereby Models ϕl1 , ϕl2 ,
and ϕu are all HMMs [6].)

[11], [13], [14] or (2) recursively maximize the likelihood
of the estimated model for an observation sequence [12],
[14]–[18]. In particular, the recursive maximum likelihood
estimation (RMLE) algorithm of Krishnamurthy and Yin has
been successful [18] (as evident by the results described in
Section III-C).

B. Design

The “HMM Cascade Model for Concept Learning” has the
topology shown in Fig. 1 [6]. Thus, ϕ̄ = {ϕl1 ,ϕl2 ,ϕu},
where the component models are HMMs defined as in Sec-
tion II. For v ∈ {l1, l2, u}, we let {Xv

n, Y
v
n } represent the state

and observation sequences, respectively, to ϕl1 ,ϕl2 ,ϕu. In
the model, observations Y lj

k of lower models ϕlj are generally
assumed to be continuous. The observations Y u

k of upper
model ϕu are the concatenated state sequences of the lower
level models. Thus, Y u

k =
(
X l1

k , X
l2
k

)
, and ϕu models the

joint distribution of X l1
k and X l2

k for each state j = 1, . . . , ru,
where ru represents the number of states in ϕu. Though not
strictly required, X l1

k and X l2
k are assumed independent to

simplify computations. The current state of the upper model,
ϕu, can be viewed as a probabilistic function of the lower
models, which implies a compositional model.

There are other important aspects to the design of the model
that enabled the results to be discussed; e.g., the particular
number of hidden states used in each of the HMMs, the
initialization of the model parameters, the feature extraction
process used for live speech and visual inputs, the pre-
programming of various “instincts”, the use of a “switching”
HMM, the finite-state machine controller (used as a part of
the autonomous exploration mode of the robot), the actual
details of the robot used as a means of embodiment, as well
as other issues that are beyond the scope of this paper. The
interested reader is encouraged to study the paper by Squire

and Levinson [6]).

C. Results

The primary set of experiments involved a robot and a
person looking at the same object (a red ball, green ball, cat,
dog); the person spoke the name of the object or some aspect
of it, and the robot learned to associate the word/phrase with
the visual features of the object. After 30 minutes of training
the parameter values were learned to the point where the robot
did not make any classification errors.

D. Related Work

More recent work that extends the cascade HMM model
has shown remarkable abilities in action-word learning, as
well as complex action sequence generation [8]. In the work
of Niehaus and Levinson, an advanced humanoid iCub robot
was taught basic word-action pairings for arm gestures like
“up”,“down”, “left”, “right”, “raise”, “lower”. Then, through
a series of tutoring sessions, the robot was able to learn a
sequence of said word-action pairings– “raise, left, right, left,
right, lower” and identify it as a new complex gesture: “wave”;
similarly, the robot was able to learn another sequence of
word-action pairings– “up, right, left, right, left, down” and
identify it as a new complex gesture: “shake”. Furthermore,
the robot was able to learn a sequence of these newly
learned complex gestures– “wave, shake” and identify it as a
new (even more) complex gesture:“greet”. In total, the robot
learned five different sequence gestures.

Moreover, because of the generative nature of the cascade
of HMMs, when the robot was asked to repeat its learned
gestures (via spoken request) it did not simply “re-play” a
recorded motion; it had extracted a model of the gesture and
could use that model to generate an instance of the gesture.
Thus, upon request, the generated gesture could vary from
the originally learned gesture but still be distinctly correct.
This exploitation of the model properties to produce ever more
complex representations of compositional and hierarchical be-
haviors is extremely promising and provides another example
of the power of cascades of HMMs.

IV. HIERARCHICAL HMMS

By “hierarchical HMM” we mean in the sense of Fine,
Singer, and Tishby [19]. Their work was motivated by the
ubiquity of complex, multi-scale, recursive, self-similar, and
hierarchical structure found in many natural sequences; partic-
ularly in language, handwriting, and speech. They successfully
extended the standard Baum-Welch algorithm and derived
an efficient procedure for estimating model parameters from
unlabeled data. They primarily desired to “enable better
modeling of different stochastic levels and length scales”, as
well as be able to “infer correlated observations over long
periods in the observation sequence through higher levels
of the hierarchy”. They demonstrated the success of their
model by learning a multi-resolution structure of English text,
whereby different levels in the hierarchy of the model were
able to learn different resolutions of the text. In this section
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we will go into some of the details involved in designing and
implementing such a hierarchical HMM model. In particular,
Section IV-A will detail the specifics of the hierarchical
model; Section IV-B will explore some of the results achieved
by the model; Section IV-C will allude to some more recent
extension results.

A. Design

HHMMs generalize standard HMMs by making each of
the hidden states a HHMM. Thus, the states of an HHMM
emit sequences, as opposed to a single symbol. This notion
can be formalized. Let Σ be a finite alphabet and Σ∗ be the
set of all possible generated strings. An observation sequence
will then be a finite string, Ō = o1o2 · · · oT ∈ Σ∗. A state
of an HHMM is denoted by qdi where d ∈ {1, . . . , D},
with state index i and hierarchy index d (where d = 1 for
the root and d = D for production states). The number of
sub-states of internal state qdi is denoted by |qdi |, where it
is recognized that internal states are not required to have
the same number of sub-states. Whenever ambiguity does
not result, for brevity, the state index is omitted so that
qd denotes a state at level d. An HHMM is characterized
by its model topology and the state transition probability
between the internal states and the output distribution vector of
production states. Therefore, for each internal state qdi (where
d ∈ {1, . . . , D}), there exists a state transition probability
matrix Aqd = (aij

qd), where aijq
d

= P
(
qd+1
j |qd+1

i

)
is the

probability of making a horizontal transition from state i to
state j, both of which are sub-states of qd. Likewise, the initial
distribution vector over the sub-states of qd, which is the
probability that state qd will initially activate state qd+1

i , is
denoted by Πqd = {πqd

(
qd+1
i

)
} = {P

(
qd+1
i |qd

)
}. If qd+1

i is
an internal state then πd

(
qd+1
i

)
can be viewed as the vertical

transition probability, whereby parent state qd transitions to
sub-state qd+1

i . Each production state qD is parametrized
by its output probability vector BqD = {bqD (k)}, where
bq

D

(k) = P
(
σk|qD

)
is the probability that the production

state qD will output symbol σk ∈ Σ. Therefore, if we
define {1, . . . , D} = [D], the HHMM can be denoted by
λ = {λqD}d∈[D] = {{Aqd}d∈[D−1], {Πqd}d∈[D−1], {Bqd}}.
Fig. 2 illustrates a simple four level HHMM.

The whole process can be described in a succinct fashion.
Beginning at the root state, a string is generated and one of
the root’s sub-states is selected randomly according to Πq1 .
Likewise, each internal state q that is entered has one of q’s
sub-states selected randomly according to Πq . The process
continues with the selected sub-state which will recursively
activate one of its sub-states. This process continues until a
production state, qD, is reached; at this time a single symbol
will be generated according to BqD and control will return to
activated state qD. Once a recursive string is generated, the
recursion-initiating state will select the next state (in the same
level) according to the level’s state transition matrix; the newly
selected state will then start a new recursive string generation
process. Each level (excluding the top) has a terminating state,
qdend, which terminates the stochastic state activation process.
When a terminating state is reached, the parent state of the
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Figure 1. An illustration of an HHMM of four levels. Gray and black edges respectively denote vertical and

horizontal transitions. Dashed thin edges denote (forced) returns from the end state of each level to the level’s

parent state. For simplicity, the production states are omitted from the figure.

a final state, denoted qd
end, which is the actual means of terminating the stochastic state

activation process. When a final state is reached, control returns to the parent state of the

whole hierarchy. The top level (root state) is the only level which does not have a final

state. Thus, the generation of the observation sequence is completed when control of all

the recursive activations is returned to the root state. Then the root state can initiate a new

stochastic string generation. We assume that all states can be reached by a finite number of

steps from the root state, that is, the model is strongly connected.

3. Inference and learning

As in the case with HMMs, three natural problems typically arise in applications that use

HHMMs:

Calculating the likelihood of a sequence: Given an HHMM and its parameter set λ =

{λqd}, find the probability P (Ō|λ) of a sequence Ō to be generated by the model λ.

Finding the most probable state sequence: Given an HHMM, its parameter set λ =

{λqd}, and an observation sequence Ō, find the single state activation sequence that is
most likely to generate the observation sequence.

Fig. 2. An example of a “hierarchical HMM” with four levels [19]. Vertical
transitions are denoted by gray arrows; horizontal transitions are denoted
by black arrows; thin dashed arrows denote the forced returns from the
terminating state of each level back to the parent state’s level. Productions
states are not included, to make the figure simpler.)

entire hierarchy regains control. The top level (root state) is the
only level which does not have a terminating state. Therefore,
when control of all recursive activations return to the root
state, the observation sequence generation is complete, at
which time the root state can trigger the generation of a new
stochastic string. The model is strongly connected. 1

As with the classic HMM, there are three primary compu-
tations that should take place for the HHMM: (1) calculation
of the likelihood of a sequence, (2) discovery of the most
probable state sequence, and (3) estimation of the model
parameters. The details of how these computations are carried
out extend beyond the scope of this brief paper; the interested
reader is advised to study p.45-49 of the paper by Fine, Singer,
and Tishby [19].

B. Results

An unbalanced three-level HHMM was designed to extract
a multi-level structure for English text. The HHMM had
a variable number of sub-states at each internal state and
production states at all levels (which made it “unbalanced”).
Two primary results were observed:

1) The induced distribution had high variance across the
different sub-states. The set of most probable strings to
be produced by each state had very little in common.

2) The most probable strings produced by states low in
the hierarchy corresponded to phonetic units like ing, th,
wh, and ou. In higher levels of the hierarchy (second and
third level) the most probable strings were words and

1Strongly connected means all states can be reached in a finite number of
steps, beginning at the root state.
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phrases like is not, will, and where. The most probable
strings at the top of the hierarchy (at the root), displayed
sentence-level strings whereby such strings would be
likely to end with a punctuation mark.

These results are fascinating and intuitive.

C. Related Work

With a desire to further understand HHMMs, the author
naively read Kurzweil’s latest book, where he claims to have
discovered “how to create a mind” and it involves using
HHMMs [20]. Considering Google recently hired Kurzweil to
be Director of Engineering and provide him with “basically
unlimited” resources to create this “mind”, it seemed that
reading his book would be a good idea, to the extent that
it might provide insight into the project. This section will
provide a brief review of the technical content, without delving
into issues of writing style or citation decisions. The review
is by no means meant to be exhaustive.

1) Neural Module: Kurzweil believes that there is a partic-
ular cortical structure (a roughly 100-neuron population) that
can be viewed as the important “neural module” in the brain
and it has particular topological and synaptic adaptive prop-
erties2. These ideas are based on recent fascinating studies.
In a 2011 paper by Markram et al., he asserts that he was
“search[ing] for evidence of Hebbian assemblies at the most
elementary level of the cortex.” However, what he discovered
were “elusive assemblies [whose] connectivity and synaptic
weights are highly predictable and constrained.” He concludes
that “these findings imply that experience cannot easily mold
the synaptic connections of these assemblies” and conjectures
that “they serve as innate, Lego-like building blocks of knowl-
edge for perception and that the acquisition of memories in-
volves the combination of these building blocks into complex
constructs” [21], [22]. Thus, according to Markram’s studies,
it seems that the brain is made up of neural modules whose
synapses are basically static; their strengths and connections
are genetically determined, while synapses that span modules
can be adaptive. Kurzweil goes on to discuss a recent study of
the brain’s connectivity that seemed to show that it holds to a
very regular grid pattern [23]. However, unacknowledged by
Kurzweil, some have criticized the study and indicated that
the results are “an artifact attributable to the limitations of
their method” [24]. Combining these results among others,
Kurzweil, then proceeds to discuss his “pattern recognizers”.

2) Pattern Recognizer: A “pattern recognizer” to Kurzweil
is either a HMM or a HHMM. His view of it seems fairly
conventional and he does not go into much technical detail.
From his perspective such an abstract model is functionally
equivalent to a neural module, as described in the previous
section. Using a large collection of such models, one could
design a brain/mind.

3) Opinion: Having read the book, a lot of what Kurzweil
is saying is reasonable3. However, it is not necessarily new,
though his book might give a different impression. Moreover,

2“Neural Module” is not Kurzweil’s phrasing, but the author’s.
3Even if, unfortunately, the author did not learn anything new about HMMs

or HHMMs from the book.

he is just providing another “functionally equivalent” model
that claims to carry out the same role as a small group of 100
neurons; this ends up being the author’s main criticism of
the work. We do not know enough about neurons, how they
interact with one another, how they store information, etc.
to create an abstract model that can claim to be functionally
equivalent. More work needs to be done in simulating high
resolution models of neurons, synapses, and cortical regions
within an embodied framework that includes access to real-
time, complex, noisy signals. Many of Kurzweil’s ideas are in
line with the work done in Levinson’s lab. But, unlike Levin-
son’s work, which has started to focus more on understanding
how computation and information-processing occurs in actual
neurons (with a desire to have a healthy interplay between
abstract models and biological models), Kurzweil has a priori
abstracted out the details of a 100-neuron module and decided
that a HMM can take its place. There is no reason to think
this might be the case. Section VI discusses this topic a bit
more and speculates on the role of HMMs in future models
of brain, language, and mind.

V. SHORT-TERM ROLE OF HMMS IN BRAIN/MIND
PROBLEM

Though it seems that the HMM (either by itself or as a
building block within a more complex model) is not necessar-
ily the complete answer to building a model of brain, language,
and mind, it is a fantastic tool that, in the author’s opinion,
could serve a new role in making progress toward the goal. A
new model of associative memory based on the dynamics of
simulated spiking neural networks is in the process of being
designed and implemented [25], [26]. The dynamics operate
in a very high dimensional space; even when it is projected
down to a lower dimensional space the meta-stable attractor
dynamics will likely be complex, chaotic, and fractal.

In order to say meaningful, quantitative statements about
said dynamics, principled methods must be applied (and
perhaps developed). In particular, as it turns out, the problem
of quantifying the extent to which the model has meta-stable
states, is information-preserving, and exhibits associativity is
isomorphic to characterizing and comparing phase portraits,
or more specifically, establishing distance metrics that can be
used to consistently quantify the similarity of a pair of phase
portraits. Due to noise in the input signals fed into the model,
as well as randomness in the neuron-neuron communication,
treating the phase portraits as stochastic is reasonable, which
means the HMM (and possibly the HHMM could be relevant).

To begin, it will be illustrative to consider an example
system [27]:

ẋ = −bx+ y − y3
ẏ = −by + z − z3
ẋ = −bz + x− x3

The system shows a range of attractors for different values
of the parameter b. For example, when b is set to b = 0.30,
six limit cycles result, as shown in Figure 3. Thus, if a small
perturbation was provided (that did not change the system
parameters), the system could fall into any of the six different
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orbits. However, with a larger external perturbation, that
results in a small adjustment of the parameter, to b = 0.28, the
system now exhibits two different chaotic attractors, as shown
in Figure 4. Furthermore, when the parameter is adjusted to
b = 0.235, a single chaotic attractor results, as shown in
Figure 5.

M. Kaufman, R. Thomas / C. R. Biologies 326 (2003) 205–214 211

Fig. 3. Chaotic and multiperiodic attractors in system (1). (a) Coexistence of six limit cycles values (b = 0.30). (b) Coexistence of two complex

limit cycles (b = 0.29). (c) Coexistence of two chaotic attractors (b = 0.28). (d) A single chaotic attractor (b = 0.27). (e) Coexistence of three

limit cycles (b = 0.24). (f) A single chaotic attractor (b = 0.235). For the intermediate values, b = 0.26 and b = 0.25, the system exhibits,

respectively, a single, highly complex limit cycle and a single chaotic attractor (not shown).

Fig. 3. b=0.30
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Fig. 4. b=0.28
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Fig. 5. b=0.235

Each resultant phase portrait is quite complex. However,
one promising way to deal with the complexity is the follow-
ing. Create a frame-of-reference centered at the current time,
discretize the space in the surrounding area (to within a certain
quantization), label these regions in space: {1, . . . , n}, for n
possible discrete regions, and allow these labels to serve as the
symbol set for an HMM. An example illustration with n = 8 is
shown in Fig 6. Thus, the HMM could learn, for a given phase
portrait, a model to describe the structure/grammar of the
dynamics. With such a representation, the distance between
phase portraits could simply be the Kullback-Leibler diver-
gence (or possibly Fisher information metric) [28]. Having an

information-based metric would be extremely useful. More
research needs to be conducted on the topic but it is clear
that using an HMM or HHMM to build a model of the phase
portrait’s structure could be very promising and possibly bring
order and clarity to a complex problem.
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Fig. 6. Example illustration of discretizing space about frame-of-reference
centered at current point (as represented by red dot). Here, eight different
regions have been identified, relative to the current location. Such a set of
regions could be considered a symbol set that an HMM could use to learn a
model for trajectories.

We are not the first to suggest that HMMs could be useful
in modeling (or capturing structure) in a nonlinear (possibly
chaotic) system. Myers, Singer, et al., focused on modeling
and prediction of a chaotic system with one-dimensional
observations of a quantized Henon map, that appears to have
worked well showing that an increase in the number of states
increases the log-likelihood [29]. As they assert, “by their
very nature, dynamical systems are Markov processes and
the presence of an attractor in a chaotic system imposes a
natural probabilistic measure on the state space– the invariant
density”, the estimation of which was developed by Marteau
and Abarbanel [30]. Myers, et al. were inspired by ideas
from Fraser, who showed that a HMM can capture some
of the aspects of a chaotic system [31]. In a more general
setting, Mees, et al. explore the relationship between modeling
nonlinear dynamical systems and statistics, though on p.382
there is a brief discussion of using HMMs [32]. Stamp and
Wu also investigated using HMMs to model the logistic and
henon maps, showing promising results [33]. It appears that
less work has been done on arbitrary nonlinear dynamical
systems, especially of higher dimension, or as estimated from
the phase portrait, especially with a view towards comparison
of different systems. Such experiments should be carried out.

VI. CONCLUSION

The HMM is a useful and profound model that has en-
joyed success on its own and as a building block in a
number of models closely linked to brain, language, and
mind. Of particular interest have been cascades of HMMs
that included promising multi-sensory integration and action-
word generation experiments; hierarchical HMMs have also
shown promise in being able to represent structure in a
given data stream at different spatiotemporal scales. Some
researchers have claimed that the HMM is the ideal model
and can be used to build a brain/mind. Such claims seem
premature. More research needs to be done to understand
the way that populations of neurons represent and process
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information, with a special focus on the dynamics of simulated
spiking neural networks (SSNNs). It appears that even in such
research, HMMs could play an important role in disentangling
the complex hierarchical structure that appears in the form
of dynamical phase portraits and provide a bridge between
dynamics and information measures. Perhaps such experi-
ments will eventually reveal that SSNNs do, in fact, represent
information in ways that can be captured by abstract models
that include HMMs. The author is not an “armchair debater”
4; therefore, it is imperative that real-world experiments are
carried out to confirm or deny such claims. Fortunately, a
series of beginning experiments is already underway.
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