
1

Some Brief Notes on Ensemble Methods:
AdaBoost, Random Forest, and Gradient Boosting

Alex Duda

I. INTRODUCTION

In general, for binary classification of numerical
data, ensemble methods can be quite strong
for a variety of reasons. Here we recall three
prominent ensemble methods [1] - AdaBoost
Classifier, Random Forest Classifier, and Gradient
Boosting Classifier. For each we will detail some
recent real-world applications, potential strengths,
potential limitations, and some scenarios where
the method is often productively applied. This is
not meant to be comprehensive but to serve as a
useful collection of notes for the machine learning
practitioner. It may be updated in the future1.

II. ADABOOST CLASSIFIER

A. Real-World Applications

1) Network intrusion detection [2]
2) Driver fatigue detection, based on EEG

signals [3]
3) Credit card fraud detection [4]

B. Potential Strengths

1) Interpolation achieved after relatively few
iterations

2) Generalization error continues to drop even
after interpolation is achieved and maintained

3) Being fast compared to other similar models
4) Simple and easy to program
5) Few hyperparameters to tune (consider this

could also be a weakness)
6) Flexible (can combine with any learning

algorithm)
7) No prior knowledge needed about weak

learner,
8) Provably effective (only need to find a rough

rule of thumb, weak learners just barely better
than random guessing)

9) Versatile (can be used with text, numeric,
discrete, data)

1Original Version: 2020-11-18, Updated: 2021-01-25

C. Potential Limitations

1) It depends on data and weak learner
2) As suggested by theory, AdaBoost can fail if

weak classifiers are too:
a) Complex, which can lead to overfitting
b) Weak, which can lead to underfitting OR

overfitting (resulting from low margins)
3) As shown empirically, AdaBoost seems weak

when presented with uniform noise; thus, if
one’s dataset is noisy, it may perform weakly.

4) When irrelevant features are included,
AdaBoost’s performance can suffer.

5) Generally, AdaBoost is not optimized
for speed (especially when compared to
XGBoost, for example).

6) With regard to hyperparameter tuning, there
is not much to tune beyond:
a) Maximum depth of weak learners,
b) Learning rate,
c) Number of iterations

D. Applicable Scenarios

1) Numeric features
2) Binary discrete classification
3) Low-noise dataset
4) When time is not a strong factor (can wait

for training and inference)
5) When computational resources are limited
6) When there is not copious time for

hyperparameter tuning
7) When user is not necessarily knowledgeable

enough to perform very nuanced
hyperparameter studies

III. RANDOM FOREST CLASSIFIER

A. Real-World Applications

1) Behavior-based intrusion detection systems
based on Random Forest [5]

2) Predict whether a given COVID-19 patient
would recover or not [6]



B. Potential Strengths

1) High accuracy
2) Relatively robust against noise and outliers
3) Each weak learner is generated independently

(by focusing it on a given data subset),
which means the potential to parallelize the
training; thus, if one had access to parallel
computing resources one could run a parallel
implementation of random forest which could
have better accuracy achieved in less time!

4) Fast
5) Can perform implicit feature selection
6) Simple to implement
7) Simple to visualize
8) Numerous hyperparameters to tune:
9) Number of features (lower number of features

should be chosen, usually around one third,
to avoid overfitting)
a) Number of trees (large number of trees

helps)
b) Maximum tree-depth (relatively ”low”)
c) Whether to bootstrap samples
d) Minimum number of samples left in a

node before a split (relatively ”low”)
e) Minimum number of samples left in the

final leaf node
10) When compare to AdaBoost, Random Forest:

a) Is less impacted by noise
b) Provides better generalization, via

reduced variance
i) This can be achieved (as guaranteed

by Central Limit Theorem) by
approaching generalization error limit
with increasing tree growth.

C. Potential Limitations

1) Increased hyperparameter tuning is needed
due to a higher number of relevant,
performance-impacting, parameters (those
this might be considered a strength to some)

2) Introduction of randomness into training and
testing data, which may not be appropriate
for all data sets

3) More knowledge is needed from user to tune
RF (when compared to AdaBoost)

4) It should not be used for time series data or
other data where one wants to avoid look-

ahead bias, as well as order and continuity
of samples needs to be preserved

D. Applicable Scenarios

1) When time allows for hyperparameter tuning
2) When inserted randomness will not strongly

alter data
3) When user is familiar with method and

impact of tuning parameters
4) When one prioritizes stated strengths (high

accuracy, implicit feature selection, etc.)
5) When one has access to parallel computation,

which can allow for much larger models to
be run, as the method is parallelizable

IV. GRADIENT BOOSTING CLASSIFIER

A. Real-World Applications

1) Classifying scenes obtained by high
resolution imagery from satellite sensors [7]
a) Note that this particular application is

not just a normal gradient boosting
framework using decision trees! In fact,
it uses a gradient boosting scheme with
convolutional neural networks (CNNs) to
obtain a CNN ensemble that outperforms
state-of-the-art scene classifiers

2) Selecting features in data with many features
[8]; this can help with
a) Identifying which features are most

important,
b) Vastly reducing number of features, which

can
i) Improve model accuracy

ii) Reduce training time
3) Predicting clicks on Ads at Facebook [9]
4) Learn hierarchical distributed representations

by stacking several layers of regression
GBDTs as its building block [10]

B. Potential Strengths

1) Easy to interpret results
2) Implicit feature selection
3) Stage-wise-additive model; existing weak

learners are frozen; new weak learners are
added one-at-a-time to help correct errors
of previous model, provides good control to
crafting a ensemble

2



4) Arbitrary differentiable loss functions
could be used, which means that the
technique could be used not only for
binary classification (logarithmic loss) but
also regression (squared error), multi-class
classification, etc.

C. Potential Limitations

1) Each of the three main parameters (shrinkage,
tree depth, tree number) need to be fit
properly to get good performance, which
sometimes can take some work (when
compared to the simpler tuning of Random
Forests)

2) Greedy algorithm that can overfit a training
dataset quickly (especially exacerbated by
noisy data), such overfitting can be helped
via:
a) Tree constraints - ensure weak learners

remain ”weak enough” (in general, the
weaker the learners are kept, the more of
them will be needed and this will help)

b) Shrinkage (aka ”learning rate”) - weight
the contribution of each new weak learner
to ensure each has a reduced influence and
learning is slowed (which will drive the
need for more weak learners)

c) Random sampling (aka ”Stochastic
Gradient Boosting”) - reduce the
correlations between weak learners in
the sequence by drawing a training data
subsample at each iteration (without
replacement) and using it to fit the new
weak learner being created during that
iteration.

d) Penalized learning - use a modified weak
learner (a regression tree instead of a
classical decision tree like CART) and
regularize the leaf weight values

3) The weak learners are built sequentially
(since later models depend on earlier ones,
this cannot be done in parallel) which
could mean longer training times than other
approaches (like random forest as discussed
previously)
a) Other implementations, like XGBoost

addresses some of these issues by
enabling parallelization, distributed

computation, cache optimization, out-of-
core-computing, etc.

4) Sensitive to outliers - since a new weak
learner focuses on fixing the errors of the
previous weak learner, it may be too impacted
by outliers!

5) Does not natively support categorical
features; needs some kind of pre-processing
step that converts categorical features into
numerical features (like one-hot encoding).
Some modified versions do attempt to
improve support for categorical features, as
with LightGBM and CatBoost.

6) Missing data can lead to much slower training
a) There are techniques that can help really

speed up training (like replacing missing
values with 0 or some kind of better
predicted value)

D. Applicable Scenarios

1) Records with missing or ill-formatted entries
were already removed

2) Data does not have high noise
3) Time is not a major factor (can afford to wait

a little)
4) There are few (if any) outliers (perhaps some

t-SNE style clustering might help during a
data exploration step to determine)

5) Categorical features have been converted via
one-hot encoding
a) Features with more than 5 levels might

cause issues; consider making adjustments
6) Ensure data set does not exacerbate the

limitations but seems like it will benefit from
the strengths

E. Model Description

As numerous recent results have shown variants
of GBCs to be very powerful [11] [12], it seems
appropriate to provide a bit more detail on how
this particular model works [13] [14] [15]. Perhaps
at some time in the future similar descriptions will
be provided for the other models.

1) Conceptual: Gradient Boosting Classifiers
(GBCs) should be thought of as a sequential
process that, over time, constructs a model (made
up of a sequence of finely tuned ”weak models”)

3



that is better and better at making correct class
predictions. In fact, GBCs produces a collection
of models, whose predictions can be intelligently
combined to produce an overall prediction that is
much better than any of the base models could
achieve on their own, as well as much better
than many well-known single ”strong models”.
Conceptually, we could enumerate the steps as
follows:

1) GBC starts off with a guess (a naive
prediction) for the classes.

2) This guess is compared to the real classes
3) An error between the guess and the actual is

computed
4) A new model is constructed that can help

reduce the error
5) This new model is then intelligently added

to the existing model to form an ”ensemble”
(the collection of models thus far constructed)

6) The updated ensemble is used to generate a
new set of predicted classes (a new ”guess”)

7) One continues to step 2 and repeats until
a user-specified termination, which can be
determined in a number of different ways
(like a certain number of new models have
been generated, a certain performance level
is reached, or performance improvement has
slowed down)

GBC is highly flexible and allows one to
tune a variety of parameters based on one’s
understanding of one’s data, to make a strong
result likely.

2) Nonspecialist but Technical: GBC involve
three primary components:

1) Loss function (which will be optimized),
2) Weak base-learner to generate predictions
3) Sequential additive model to add base-

learners in a manner that minimizes the loss
function

GBCs complete the following steps:
1) Initialize ensemble with some kind of naive

prediction model (for example, using the
simple ”odds”)

2) Compute ensemble ”residuals” (the error) as
a function of the ensemble predicted classes
and the actual predicted classes

3) Generate a new weak base-learner with inputs
(training data) and labels (residuals from step

2) that minimizes the specified loss function
(correlates with the direction of the negative
gradient of the loss function)

4) Sequentially add the optimized base-learner
to the ensemble, using a specified learning
rate (which determines how much the
prediction from the new base-learner should
impact the ensemble’s prediction)

5) Use the updated ensemble to generate a new
set of class predictions

6) Go back to step 2 (repeat this process for M
iterations, where M represents the number of
base-learners that will sequentially be added
to the ensemble)

V. CONCLUSION

All three ensemble methods are quite powerful.
If one is looking to solve a binary classification
problem for numerical data, these would serve as
an appropriate start. However, keep in mind that
for a particular situation, various modifications
might need to be made and implications examined.
For instance, if one has imbalanced classes (where
one does not have equal numbers of training
samples for each class [16]), there are numerous
potential remedies [17]. For example when using
Python machine learning library scikit-learn, for
the RF case :

1) Special modifications to regular models can
be adopted:
a) Class weighting - whereby one changes

the weight that each class has when
computing the impurity score of
a given chosen split point (change
RandomForestClassifier model parameter
class weight to ’balanced’)

b) Bootstrap class weighting - whereby
one changes the class weighting based
on class distribution in each bootstrap
sample (change RandomForestClassifier
model parameter class weight to ’balanced
subsample’)

2) Special models can be leveraged from other
libraries (like imblearn.ensemble library):
a) Random under-sampling - whereby one

performs data sampling on the bootstrap
sample to change class distribution;
in particular, one can undersample the

4



majority class for each bootstrap sample
(see BalancedRandomForestClassifier
from imblearn.ensemble library)

Also, though commonly used, intuitively, one-
hot encoding seems to have potential drawbacks
like generating many orthogonal features that [18]
[19]:

1) Appear to have no particular relationship
(which may have been potentially useful
information) - as when for a given category
there are numerous, related, choices

2) Make scaling up the model challenging
One should keep in mind such consideration,
among others, when applying these ensemble
methods.

REFERENCES

[1] J. Nikulski, “The ultimate guide to
adaboost, random forests and xgboost,”
https://towardsdatascience.com/the-ultimate-
guide-to-adaboost-random-forests-and-
xgboost-7f9327061c4f, Towards Data
Science, 2020, accessed: 2020-11-18.

[2] W. Hu, W. Hu, and S. Maybank,
“Adaboost-based algorithm for network
intrusion detection,” IEEE Transactions
on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 38, no. 2,
pp. 577–583, 2008. [Online]. Available:
https://doi.org/10.1109/TSMCB.2007.914695

[3] J. Hu, “Automated detection of
driver fatigue based on adaboost
classifier with eeg signals,” Frontiers
in Computational Neuroscience, vol. 11,
p. 72, 2017. [Online]. Available:
https://doi.org/10.3389/fncom.2017.00072

[4] K. Randhawa, C. K. Loo, M. Seera,
C. P. Lim, and A. K. Nandi, “Credit
card fraud detection using adaboost and
majority voting,” IEEE Access, vol. 6, pp.
14 277–14 284, 2018. [Online]. Available:
https://doi.org/10.1109/ACCESS.2018.2806420

[5] P. A. A. Resende and A. C. Drummond, “A
survey of random forest based methods for
intrusion detection systems,” ACM Comput.
Surv., vol. 51, no. 3, May 2018. [Online].
Available: https://doi.org/10.1145/3178582

[6] C. Iwendi, A. K. Bashir, A. Peshkar,
R. Sujatha, J. M. Chatterjee, S. Pasupuleti,

R. Mishra, S. Pillai, and O. Jo,
“Covid-19 patient health prediction
using boosted random forest algorithm,”
Frontiers in Public Health, vol. 8,
p. 357, 2020. [Online]. Available:
https://doi.org/10.3389/fpubh.2020.00357

[7] F. Zhang, B. Du, and L. Zhang, “Scene
classification via a gradient boosting
random convolutional network framework,”
IEEE Transactions on Geoscience and
Remote Sensing, vol. 54, no. 3, pp.
1793–1802, 2016. [Online]. Available:
https://doi.org/10.1109/TGRS.2015.2488681

[8] H. Rao, X. Shi, A. K. Rodrigue, J. Feng,
Y. Xia, M. Elhoseny, X. Yuan, and L. Gu,
“Feature selection based on artificial bee
colony and gradient boosting decision
tree,” Applied Soft Computing, vol. 74,
pp. 634 – 642, 2019. [Online]. Available:
https://doi.org/10.1016/j.asoc.2018.10.036

[9] X. He, J. Pan, O. Jin, T. Xu, B. Liu,
T. Xu, Y. Shi, A. Atallah, R. Herbrich,
S. Bowers, and J. Q. n. Candela, “Practical
lessons from predicting clicks on ads at
facebook,” in Proceedings of the Eighth
International Workshop on Data Mining for
Online Advertising, ser. ADKDD’14. New
York, NY, USA: Association for Computing
Machinery, 2014, p. 1–9. [Online]. Available:
https://doi.org/10.1145/2648584.2648589

[10] J. Feng, Y. Yu, and Z.-H. Zhou, “Multi-
layered gradient boosting decision trees,”
in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., vol. 31.
Curran Associates, Inc., 2018, pp. 3551–
3561.

[11] Y. Freund, “Real-world applications of
boosting,” 2012, accessed: 2020-11-18.

[12] A. J. Wyner, M. Olson, J. Bleich,
and D. Mease, “Explaining the success
of adaboost and random forests as
interpolating classifiers,” J. Mach.
Learn. Res., vol. 18, no. 1, p.
1558–1590, Jan. 2017. [Online]. Available:
https://dl.acm.org/doi/10.5555/3122009.3153004

[13] Z. Zhang, “Boosting algorithms explained,”
https://towardsdatascience.com/boosting-

5



algorithms-explained-d38f56ef3f30, Towards
Data Science, 2019, accessed: 2020-11-18.

[14] A. Natekin and A. Knoll, “Gradient
boosting machines, a tutorial,”
Frontiers in Neurorobotics, vol. 7,
p. 21, 2013. [Online]. Available:
https://doi.org/10.3389/fnbot.2013.00021

[15] J. Brownlee, “A gentle introduction
to the gradient boosting
algorithm for machine learning,”
https://machinelearningmastery.com/gentle-
introduction-gradient-boosting-algorithm-
machine-learning/, Machine Learning
Mastery, 2020, accessed: 2020-11-18.

[16] ——, “A gentle introduction
to imbalanced classification,”
https://machinelearningmastery.com/what-
is-imbalanced-classification/, Machine
Learning Mastery, 2020, accessed: 2020-11-
18.

[17] ——, “8 tactics to combat imbalanced
classes in your machine learning dataset,”
https://machinelearningmastery.com/tactics-
to-combat-imbalanced-classes-in-your-
machine-learning-dataset/, Machine
Learning Mastery, 2020, accessed: 2020-11-
18.

[18] P. L. Saint, “How do gradient boosting
algorithms handle categorical variables?”
https://blog.dataiku.com/how-do-gradient-
boosting-algorithms-handle-categorical-
variables, Dataiku, 2020, accessed: 2020-
11-18.

[19] D. Martin, “Are you getting
burned by one-hot encoding?”
https://kiwidamien.github.io/are-you-
getting-burned-by-one-hot-encoding.html,
kiwidamien.github.io, 2019, accessed:
2020-11-18.

6


